COMPLEX MULTIPLICATION

1. The modular function j

In this section we study modular functions on \mathfrak{h}, these correspond to meromorphic functions on the modular curve $Y(1)$ but with a special condition at ∞.
1.1. Fourier coefficients. Consider the function

$$
z \mapsto e^{2 \pi i z}
$$

It is a surjection from \mathfrak{h} to the punctured disc

$$
D_{0}=\{z \in \mathbb{C}: 0<|z|<1\}
$$

moreover it is locally biholomorphic (bijective and holomorphic with holomorphic inverse). We define a new variable q by setting

$$
q=e^{2 \pi i z}
$$

Suppose now f is a meromorphic function on \mathfrak{h} such that

$$
f(z)=f(z+n), \forall n \in \mathbb{Z}
$$

then the value of f only depends on $q=e^{2 \pi i z}$ so that there exists a unique meromorphic function

$$
F: D_{0} \rightarrow \mathbb{C}
$$

such that

$$
f(z)=F(q)
$$

We can consider 0 as a singularity of F, and if this singularity is at worst a pole, then F has a Laurent series expansion about 0 :

$$
F(q)=\sum_{n \gg \infty} a_{n} q^{n}
$$

Definition 1.1. Let f be a meromorphic function on \mathbb{C} such that

$$
f(z)=f(z+n), \quad \forall n \in \mathbb{Z}
$$

Then f is holomorphic (resp. meromorphic) at ∞ if the function $F(q)$ defined above is holomorphic (resp. meromorphic) at 0 .

If f is meromorphic at ∞ the Fourier series expansion of f or its q-expansion is the power series $F(q)=\sum_{n \gg 0} a_{n} q^{n}$.

Recall the group $\Gamma=S L_{2}(\mathbb{Z})$ acts on \mathfrak{h}. Suppose f is a meromorphic function on \mathfrak{h} such that $f(\gamma z)=f(z) \forall \gamma \in \Gamma$, then in particular since $\zeta z=z+1$ so that $f(z)=(z+n), \quad \forall n \in \mathbb{Z}$ so we can apply the above constructions

Definition 1.2. A modular function is a meromorphic function $f: \mathfrak{h} \rightarrow \mathbb{C}$ satisfying the following two properties:
i) $f(\gamma z)=f(z) \forall \gamma \in \Gamma$
ii) f is holomorphic at ∞.

The space of all modular functions will be denoted \mathcal{M}_{0}^{\prime}.

It is straightforward to check that \mathcal{M}_{0}^{\prime} is a field and contains all the constant functions.

Remark 1.3. If we add a point ∞ to the Riemann surface $Y(1)=\Gamma \backslash \mathfrak{h}$, where we consider ∞ as the center of the disc \mathbb{D}_{0} in the new coordinate q. The new coordinate q defines a chart around this point, hence we may consider $Y(1) \coprod\{\infty\}$ as Riemann surface which we denote by $X(1)$. This construction is analogous to the adding ∞ to \mathbb{C} to obtain $\mathbb{P}^{1}(\mathbb{C})$ and one sees that $X(1)$ is also compact.
1.2. Modular functions and modular forms. The main theorem of this section gives a very simple description of \mathcal{M}_{0}.

Theorem 1.4. There exists a unique modular function j satisfying the following conditions:
i) j is holomorphic on \mathfrak{h}, has a simple pole at ∞ and $j(\omega)=0$
ii) j induces by passage to the quotient a bijection $\Gamma \backslash \mathfrak{h} \rightarrow \mathbb{C}$
iii) The first term in the q-expansion of j is $\frac{1}{q}$

Moreover we have an isomorphism $\mathcal{M}_{0}^{\prime}=\mathbb{C}(j)$, i.e. any modular function is a rational function of j.

In order to construct j we need to consider a larger class of functions than modular functions.

Definition 1.5. Let $k \in \mathbb{N}$. A modular function of weight k is a meromorphic function on \mathfrak{h} satisfying the following two properties
i) $f(\gamma z)=(c z+d)^{2 k} f(z)$
ii) f is meromorphic at ∞

If in addition f is holomorphic and holomorphic at ∞ then we say f is a modular form. If f is 0 at ∞, i.e. the q-expansion has all non-zero coefficients in positive degree, then f is a a cusp form. We will use $\mathcal{M}_{k}^{\prime}, \mathcal{M}_{k}$ and \mathcal{S}_{k} to denote the spaces of modular functions, modular forms and cusp forms of weight k respectively.

Note that condition i) in the above definition ensures $f(z)=f(z+n), \quad \forall n \in \mathbb{Z}$ so that condition $i i$) makes sense. Then modular functions of weight 0 are just modular functions in the sense of Definition 1.2.

Exercise: Let f and g be modular functions of weights k_{1} and k_{2} respectively. Show that $f g$ is a modular function of weight $k_{1}+k_{2}$ and f / g is a modular function of weight $k_{1}-k_{2}(g \neq 0)$ and that if f and g are both modular forms, then $f g$ is also a modular form.

The exercise shows that if we let

$$
\mathcal{M}:=\bigoplus_{i=0}^{\infty} \mathcal{M}_{k}
$$

then \mathcal{M} has a natural structure of a graded ring.
Remark 1.6. Strictly speaking these should be modular functions of weight k and level Γ. However since we do not consider other levels in this course, we will ignore this point.

Recall the lattice $\Lambda_{\tau}=\langle 1, \tau\rangle$ of the last lecture. For $k \geq 2$ an integer, define the Eisenstein series of weight $2 k$ to be the function

$$
E_{k}(z):=\sum_{\omega \in \Lambda_{z}-0} \frac{1}{\omega^{2 k}}=\sum_{(m, n) \in \mathbb{Z}^{2}-(0,0)} \frac{1}{(n z+m)^{2 k}}
$$

We also define the following functions

$$
g_{2}(z)=60 E_{2}(z), \quad g_{2}(z)=140 E_{3}(z), \quad \Delta=g_{2}^{3}(z)-27 g_{3}^{2}(z)
$$

Proposition 1.7. For $k \geq 2$ an integer
i) The series defining E_{k} above converges to a holomorphic function on \mathfrak{h}. Moreover $E_{k}(z)$ is a modular form of weight $2 k$.
ii) $E_{k}(\infty)=2 \zeta(2 k)$ where ζ is the Riemann zeta function.
iii) The function

$$
j:=1728 \frac{g_{2}^{3}}{\Delta}
$$

is a modular function (of weight 0)
Proof. i) As each of the terms in the series is a holomorphic function on \mathfrak{h} it suffices to prove that the series converges absolutely and uniformly on compact subset of \mathfrak{h}. Let P_{n} denote the parallelogram with vertices $\{ \pm n z, \pm n\}$ so that $\Lambda \cap P_{n}$ has $8 n$ points. Let r be the minimum distance from 0 to a point on the parallelogram P_{1}, we then have the estimate

$$
\begin{gathered}
\sum_{\omega \in \Lambda_{z}-0} \frac{1}{|\omega|^{2 k}}=\sum_{n=1}^{\infty} \sum_{\omega \in \Lambda_{z} \cap P_{n}} \frac{1}{|\omega|^{2 k}}<\sum_{n=1}^{\infty} \frac{8 n}{(n r)^{2 k}} \\
=\frac{8}{r^{2 k}} \sum_{n=1}^{\infty} \frac{1}{n^{2 k-1}}=\frac{8}{r^{2 k}} \zeta(2 k-1)
\end{gathered}
$$

For z in a compact subset of \mathfrak{h}, the value r has a positve infimum, and since $\zeta(2 k-1)$ coverges for $k>1$, it follows easily that the series converges absolutely and uniformly in any compact subset of \mathfrak{h}.

We leave it as an exercise to check that $E_{k}(z)$ has the required translation property with respect to elements of Γ.

For holomorphicty at ∞, this is equivalent to checking that $E_{k}(z)$ is bounded as $z \rightarrow \infty$. But this follows from the above estimate by noting that for $C>0$, the value r has an infimum on the set $\{z \in \mathfrak{h}:|z|>C\}$.
ii) By absolute convergence we may rearrange the order of summation so that

$$
E_{k}(z)=\sum_{n \in \mathbb{Z}-0} \frac{1}{n^{2 k}}+\sum_{m \in \mathbb{Z}-0} \sum_{n \in \mathbb{Z}} \frac{1}{m z+n}
$$

All the terms in the right term tend to 0 as $\Im z \rightarrow \infty$, and the first term is just $2 \zeta(2 k)$.
iii) Since g_{2} has weight 2 and g_{3} has weight 3 , then Δ is a modular form of weight 6 which is non-zero by Corollary 1.9. It follows from the exercise that j is a modular function of weight 0 .

Remarkably, we will actually show that the above construction in some sense exhausts all modular forms (of any weight). More precisely, we will show that the space of modular forms \mathcal{M} is isomorphic to $\mathbb{C}\left[E_{2}, E_{3}\right]$. This is something of a miracle
as what the statement is really saying is that there are many algebraic relations between these modular forms, whose definitions a priori are based completely in analysis.

The following is the key result we need to prove the above statements. Given a meromorphic function f and $z \in \mathbb{C}$ we denote by $v_{z}(f)$ the order of the function f at z. If f is a modular function, then $v_{\infty}(f)$ is defined in the obvious way, and it follows from the isolation of zeros/poles theorem that there are only finitely many $z \in D \cup\{\infty\}$ for which $v_{z}(f)$ is non-zero.

Proposition 1.8. Let f be a modular function of weight k and $e_{z}=\left|\Gamma_{z}\right| / 2$, then we have the relation

$$
v_{\infty}(f)+\sum_{z \in \Gamma \backslash \mathfrak{h}} \frac{v_{z}(f)}{e_{z}}=\frac{k}{6}
$$

Proof. Let C be the path in the diagram on page 87 of Serre's "A Course in Arithmetic." It folllows from the argument principle that

$$
\frac{1}{2 \pi i} \int \frac{f^{\prime}}{f} d z=\sum_{z \in \text { interior of } C} v_{z}(f)
$$

Now we compute the left hand side of the expressions. The integrals along the segments $A B$ and $D^{\prime} E$ cancel since $f(z)=f(z+1)$. To compute the contribution of $E A$, we note that changing the variable to q, this segment is mapped to a path which loops once around 0 , hence taking $z \rightarrow \infty$ this contribution will be $-v_{\infty}(f)$.

For the contribution $D D^{\prime}$ at $\omega=\frac{1+\sqrt{-3}}{2}$, note that as we take the arc smaller and smaller, we may assume that the only possible zero/pole occurs at ω. Also for a small enough arc, the value of the f^{\prime} / f on the arc is roughly equal on the arc, so that in the limit

$$
\frac{1}{2 \pi i} \int_{D D^{\prime}} \frac{f^{\prime}}{f} d z \rightarrow-\frac{1}{6} v_{\omega}(f)
$$

The - sign comes about from the orientation of the arcs, the same remarks reply for the point i and ω^{2}. The contribution along $B B^{\prime}$ is equal to the one along $D D^{\prime}$ and the contribution along $C C^{\prime}$ is $-\frac{v_{i}(f)}{2}$.

Finally we must compute the contribution along the $\operatorname{arcs} B^{\prime} C$ and $C^{\prime} D$. Let

$$
\mu=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

then μ maps $B^{\prime} C$ to $C^{\prime} D$ with the opposite orientation. The relation

$$
f(\mu z)=f(-1 / z)=z^{2 k} f(z)
$$

gives us

$$
\frac{f^{\prime}(-1 / z)}{z^{2}}=z^{2 k} f^{\prime}(z)+2 k z^{2 k-1} f(z)
$$

We thus obtain

$$
\begin{gathered}
\int_{D C^{\prime}} \frac{f^{\prime}}{f} d z=-\int_{B C^{\prime}} \frac{f^{\prime}(\mu z)}{f(\mu z)} d \mu z \\
=-\int_{B C^{\prime}} \frac{f^{\prime}(z)}{f(z)}+\frac{2 k}{z} d z
\end{gathered}
$$

Now $\int_{B C^{\prime}} \frac{2 k}{z} d z$ can be computed explicitly, by eg. making the substitution $z=e^{2 \pi i x}$, and we obtain $\frac{k \pi i}{3}$ for this integral. Taking the limit for smaller and smaller arcs the formula above becomes:

$$
\frac{k}{6}-v_{\infty}(f)-\frac{v_{i}(f)}{2}-\frac{v_{\omega}(f)}{3}=\sum_{z \in \text { interior } D} v_{z}(f)
$$

The result follows from the the fact that $e_{\omega}=3$ and $e_{i}=2$ and $e_{z}=1$ for all z in the interior of D.

Corollary 1.9. i) E_{2} and E_{3} can only have zeros at the points ω or $i . \Delta$ is non-zero on \mathfrak{h} and has zero of order 1 at ∞.
ii) $\mathcal{M}=\oplus_{k=0}^{\infty} \mathcal{M}_{k} \cong \mathbb{C}\left[E_{2}, E_{3}\right]$ as rings.

Proof. i) Since E_{2} and E_{3} are holomorphic, it follows that they have non-negative orders everywhere, hence since $k / 6<1$, it follows they can only have zeros at the specified points.

By part ii) of Proposition 1.7 we have

$$
\begin{gathered}
g_{2}(\infty)=60 E_{2}(\infty)=120 \zeta(4)=4 / 3 \pi^{4} \\
g_{3}(\infty)=140 E_{3}(\infty)=280 \zeta(6)=8 / 27 \pi^{6}
\end{gathered}
$$

Thus $v_{\infty}(\Delta) \geq 1$ and since $\Delta \in \mathcal{M}_{6}$, the above formula shows $v_{\infty}(\Delta)=1$ and that it cannot have any other zeros.
ii) The map

$$
\mathcal{M}_{k} \rightarrow \mathbb{C}
$$

given by $f \mapsto f(\infty)$ has kernel \mathcal{S}_{k} and is surjective for $k \geq 6$. The surjectivity follows from the fact that we can write $k=2 \alpha+3 \beta$ for some positive integers α, β. Then $E_{2}^{\alpha} E_{3}^{\beta} \in \mathcal{M}_{k}$, is non-zero at ∞. Therefore $\mathcal{M}_{k}=\mathcal{S}_{k} \oplus\left\langle E_{2}^{\alpha} E_{3}^{\beta}\right\rangle$, so that it suffices to show \mathcal{S}_{k} is spanned by E_{2} and E_{3}.

Let $f \in \mathcal{S}_{k}$, then $f / \Delta \in \mathcal{M}_{k}$ since Δ is non-zero on \mathfrak{h} and has a simple pole at 0 . Thus by induction we need to show for $k=0,1,2,3,4,5$ that $\mathcal{M}_{k} \subset \mathbb{C}\left[E_{2}, E_{3}\right]$.

We leave this easy exercise, which follows from Proposition 1.8 for the reader to check.

Exercise: Use Proposition 1.8 to show that $\mathcal{M}_{k} \subset \mathbb{C}\left[E_{2}, E_{3}\right]$ for $k=0, \ldots, 5$
Proof. (of Theorem 1.4) It is clear any function is unique as the difference would be a holomorphic map on a compact Riemann surface, hence constant and since $j(\omega)=0$ this constant must be 0 . Thus it suffices to show j satisfies the conditions of the theorem.
i) This follows immediately from Corollary 1.9.
ii) We need to show for $a \in \mathbb{C}, j(z)-a$ has a zero of order 1 . Since $j(z)-a$ is a modular function of weight 0 with a simple pole at ∞, Proposition 1.8 shows that

$$
\sum_{z \in \Gamma \backslash \mathfrak{h}} \frac{v_{z}(j-a)}{e_{z}}=1
$$

It follows that $j-a$ has a unique zero on $\Gamma \backslash \mathfrak{h}$.
iii) This follows from an explicit computation, see Serre's "A course in Arithmetic."

We now show that any $f \in \mathcal{M}_{0}^{\prime}$ is a rational function of j. Suppose $f \in \mathcal{M}_{0}^{\prime}$ has poles at a. We may multiply f by a suitable power of $j-j(a)$ so that f is holomorphic at a, hence we may assume f is holomorphic on $\Gamma \backslash \mathfrak{h}$. Suppose f has a pole of order n at ∞, then $f \Delta^{n} \in \mathcal{M}_{6 n}$, but we know $\mathcal{M}_{6 n}$ is spanned by $E_{2}^{\alpha} E_{3}^{\beta}$ where $2 \alpha+3 \beta=6 n$. Thus it suffices to show the result for $\frac{E_{2}^{\alpha} E_{3}^{\beta}}{\Delta^{n}}$.

But $2 \alpha+3 \beta=6 n$ implies $3 \mid \alpha$ and $2 \mid \beta$, so that it suffices to show the result for $\frac{E_{2}^{3}}{\Delta}$ and $\frac{E_{3}^{2}}{\Delta}$. This follows from the identities

$$
\begin{gathered}
\frac{E_{2}^{3}}{\Delta}=\frac{g_{2}^{3}}{60^{3} \Delta}=\frac{1}{1728.60^{3}} j \\
\frac{E_{3}^{2}}{\Delta}=\frac{g_{3}^{2}}{140^{2} . \Delta}=\frac{1}{140^{2} .27}\left(\frac{g_{2}^{3}}{\Delta}-1\right)=\frac{1}{1728.140 .27} j-\frac{1}{140^{2} .27}
\end{gathered}
$$

