COMPLEX MULTIPLICATION

1. THE MODULAR FUNCTION j

In this section we study modular functions on f, these correspond to meromor-
phic functions on the modular curve Y (1) but with a special condition at co.

1.1. Fourier coefficients. Consider the function

2miz

zZe
It is a surjection from b to the punctured disc
Dy={z€C:0< |z| <1}

moreover it is locally biholomorphic (bijective and holomorphic with holomorphic
inverse). We define a new variable ¢ by setting

qg= e27riz
Suppose now f is a meromorphic function on h such that

f(z)=f(z+n),YneZ

2miz

then the value of f only depends on ¢ = e
morphic function

so that there exists a unique mero-

F:Dy—C
such that
f(z) = F(q)
We can consider 0 as a singularity of F', and if this singularity is at worst a pole,
then F' has a Laurent series expansion about 0:

F(Q) = Z anq"”

n>>oo

Definition 1.1. Let f be a meromorphic function on C such that
f(z)=f(z+n), VneZ

Then f is holomorphic (resp. meromorphic) at oo if the function F'(g) defined
above is holomorphic (resp. meromorphic) at 0.

If f is meromorphic at oo the Fourier series expansion of f or its g-expansion is
the power series F'(q) = >_,< <0 @nq".

Recall the group T' = SLy(Z) acts on h. Suppose f is a meromorphic function
on b such that f(vz) = f(z) Vv € I, then in particular since (z = z + 1 so that
f(z) = (2 +n), Vn € Zso we can apply the above constructions

Definition 1.2. A modular function is a meromorphic function f : § — C satisfy-
ing the following two properties:
i) fvz) = f(z) Vy el
ii) f is holomorphic at co.
The space of all modular functions will be denoted Mg,
1
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It is straightforward to check that My is a field and contains all the constant
functions.

Remark 1.3. If we add a point oo to the Riemann surface Y (1) = I'\h, where we
consider 0o as the center of the disc Dy in the new coordinate ¢. The new coordinate
q defines a chart around this point, hence we may consider Y (1) [[{oo} as Riemann
surface which we denote by X (1). This construction is analogous to the adding oo
to C to obtain P*(C) and one sees that X (1) is also compact.

1.2. Modular functions and modular forms. The main theorem of this section
gives a very simple description of M.

Theorem 1.4. There exists a unique modular function j satisfying the following
conditions:

i) j is holomorphic on b, has a simple pole at oo and j(w) =0

i) j induces by passage to the quotient a bijection T'\h — C

i11) The first term in the q-expansion of j is %

Moreover we have an isomorphism M{ = C(j), i.e. any modular function is a
rational function of j.

In order to construct j we need to consider a larger class of functions than
modular functions.

Definition 1.5. Let £ € N. A modular function of weight k is a meromorphic
function on b satisfying the following two properties

i) £(72) = ez + d)F £(2)

ii) f is meromorphic at co

If in addition f is holomorphic and holomorphic at co then we say f is a modular
form. If f is 0 at oo, i.e. the g-expansion has all non-zero coefficients in positive
degree, then f is a a cusp form. We will use M), M}, and Sy, to denote the spaces
of modular functions, modular forms and cusp forms of weight k respectively.

Note that condition i) in the above definition ensures f(z) = f(z +n), Vn€Z
so that condition #i) makes sense. Then modular functions of weight 0 are just
modular functions in the sense of Definition 1.2.

Ezercise: Let f and g be modular functions of weights k; and ko respectively.
Show that fg is a modular function of weight k1 + k2 and f/g is a modular function
of weight k1 — ko (g # 0) and that if f and g are both modular forms, then fg is
also a modular form.

The exercise shows that if we let

M = éMk
1=0

then M has a natural structure of a graded ring.

Remark 1.6. Strictly speaking these should be modular functions of weight & and
level I'. However since we do not consider other levels in this course, we will ignore
this point.
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Recall the lattice A, = (1,7) of the last lecture. For k > 2 an integer, define the
Fisenstein series of weight 2k to be the function

1 1
Ep(z) = ) ok T > (nz 1 m)%*

weA.—0 (m,n)€Z2—(0,0)
We also define the following functions
92(2) = 60B2(2), g2(2) = 140E5(2), A = g3(2) — 2743(2)

Proposition 1.7. For k > 2 an integer
i) The series defining E}, above converges to a holomorphic function on by. More-
over Ei(z) is a modular form of weight 2k.
i) Ey(00) = 2¢(2k) where ¢ is the Riemann zeta function.
i11) The function
R
ji= 1728A

is a modular function (of weight 0)

Proof. 1) As each of the terms in the series is a holomorphic function on b it suffices
to prove that the series converges absolutely and uniformly on compact subset of
h. Let P, denote the parallelogram with vertices {£+nz,+n} so that AN P, has 8n
points. Let r be the minimum distance from 0 to a point on the parallelogram P;,
we then have the estimate

1 = 1 = 8
Z W:Z Z |w|2k<n§::1(n£2k

weA,—0 n=1lweA,NP,

8 o 1 8
= 2k Z n2k—1 — 2k C(2k —1)
n=1

For z in a compact subset of b, the value r has a positve infimum, and since
C(2k — 1) coverges for k > 1, it follows easily that the series converges absolutely
and uniformly in any compact subset of b.

We leave it as an exercise to check that Ey(z) has the required translation prop-
erty with respect to elements of T'.

For holomorphicty at oo, this is equivalent to checking that Fj(z) is bounded as
z — oo. But this follows from the above estimate by noting that for C' > 0, the
value 7 has an infimum on the set {z € h : |z| > C}.

ii) By absolute convergence we may rearrange the order of summation so that

Ek(z): Z %—’_ Z Zmzl—Fn

n€Z—0 meEZ—0neEZ

All the terms in the right term tend to 0 as Sz — 0o, and the first term is just
2¢(2k).

iii) Since go has weight 2 and g3 has weight 3, then A is a modular form of
weight 6 which is non-zero by Corollary 1.9. It follows from the exercise that j is
a modular function of weight 0.

O

Remarkably, we will actually show that the above construction in some sense
exhausts all modular forms (of any weight). More precisely, we will show that the
space of modular forms M is isomorphic to C[Es, E'3]. This is something of a miracle
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as what the statement is really saying is that there are many algebraic relations
between these modular forms, whose definitions a priori are based completely in
analysis.

The following is the key result we need to prove the above statements. Given a
meromorphic function f and z € C we denote by v, (f) the order of the function f
at z. If f is a modular function, then v (f) is defined in the obvious way, and it
follows from the isolation of zeros/poles theorem that there are only finitely many
z € DU {oo} for which v,(f) is non-zero.

Proposition 1.8. Let f be a modular function of weight k and e, = |T',|/2, then

we have the relation
v, (f k
Voo () + D # =35

zeT\h ~

Proof. Let C be the path in the diagram on page 87 of Serre’s ” A Course in Arith-
metic.” It folllows from the argument principle that

1 I
| e X )
zeinterior of C

Now we compute the left hand side of the expressions. The integrals along the
segments AB and D'E cancel since f(z) = f(z +1). To compute the contribution
of F A, we note that changing the variable to ¢, this segment is mapped to a path
which loops once around 0, hence taking z — co this contribution will be —veo(f).

For the contribution DD’ at w = %ﬂ, note that as we take the arc smaller
and smaller, we may assume that the only possible zero/pole occurs at w. Also for
a small enough arc, the value of the f’/f on the arc is roughly equal on the arc, so
that in the limit )

1 1
el - f7dz — —évw(f)

The — sign comes about from the orientation of the arcs, the same remarks reply
for the point ¢ and w?. The contribution along BB’ is equal to the one along DD’
and the contribution along C'C”’ is —#

Finally we must compute the contribution along the arcs B'C and C’D. Let

(0 -1
F={1 o
then p maps B’C to C'D with the opposite orientation. The relation
fuz) = f(=1/2) = 22 f(2)

gives us
f (;21/2) _ ZQkf,(Z)—FZkZQk_lf(Z)
We thus obtain
f! f'(p2)
—dz = — d
pcr f ‘ o f(pz) ¢

. f'(z) | 2k
B o [(2) * z 4
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Now [ BCY %dz can be computed explicitly, by eg. making the substitution
2z = 2™ and we obtain % for this integral. Taking the limit for smaller and

smaller arcs the formula above becomes:

R S D S0
zeinterior D

The result follows from the the fact that e, = 3 and e; = 2 and e, = 1 for all z in
the interior of D. O

Corollary 1.9. i) E2 and Es can only have zeros at the points w or i. A is
non-zero on by and has zero of order 1 at co.
i) M = @3 (M, = C[Es, E3] as rings.

Proof. i) Since E5 and E3 are holomorphic, it follows that they have non-negative
orders everywhere, hence since k/6 < 1, it follows they can only have zeros at the
specified points.

By part ii) of Proposition 1.7 we have

g2(00) = 60E,(00) = 120¢(4) = 4/37*

g3(00) = 140E3(00) = 280¢(6) = 8/27x°
Thus v (A) > 1 and since A € Mg, the above formula shows v (A) = 1 and
that it cannot have any other zeros.
ii) The map
A4k49-c
given by f — f(co) has kernel S, and is surjective for k > 6. The surjectivity
follows from the fact that we can write k = 2a + 33 for some positive integers «, (.
Then Eg‘Eg € My, is non-zero at oco. Therefore My = S ® (EzaEg), so that it
suffices to show Sy is spanned by Es and Fjs.
Let f € Sk, then f/A € My, since A is non-zero on h and has a simple pole at
0. Thus by induction we need to show for k =0, 1,2, 3,4, 5 that M, C C[E2, E3].
We leave this easy exercise, which follows from Proposition 1.8 for the reader to
check.
O

Ezercise: Use Proposition 1.8 to show that My C C[FEs, E3] for k=0, ...,5

Proof. (of Theorem 1.4) It is clear any function is unique as the difference would
be a holomorphic map on a compact Riemann surface, hence constant and since
j(w) = 0 this constant must be 0. Thus it suffices to show j satisfies the conditions
of the theorem.

i) This follows immediately from Corollary 1.9.

ii) We need to show for a € C, j(z) — a has a zero of order 1. Since j(z) —a is a
modular function of weight 0 with a simple pole at oo, Proposition 1.8 shows that

Z v.(j —a) 1
e
z€l'\b

It follows that j — a has a unique zero on I'\b.
iii) This follows from an explicit computation, see Serre’s ”A course in Arith-
metic.”
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We now show that any f € M| is a rational function of j. Suppose f € M,
has poles at a. We may multiply f by a suitable power of j — j(a) so that f is
holomorphic at a, hence we may assume f is holomorphic on I'\h. Suppose f has
a pole of order n at co, then fA™ € Mg, but we know Mg, is spanned by EgEf

« ﬁ
where 2a + 38 = 6n. Thus it suffices to show the result for EQA? .

But 2« + 38 = 6n implies 3|a and 2|3, so that it suffices to show the result for
3 2
% and %. This follows from the identities

E3 g5 1 )

A T 60PA T~ 1728.60%7
EF g 1 %) 1 1
A 1402.A 140227 <A ) ~ 1728.140.277 ~ 140227



