
COMPLEX MULTIPLICATION

1. The modular function j

In this section we study modular functions on h, these correspond to meromor-
phic functions on the modular curve Y (1) but with a special condition at ∞.

1.1. Fourier coefficients. Consider the function

z 7→ e2πiz

It is a surjection from h to the punctured disc

D0 = {z ∈ C : 0 < |z| < 1}
moreover it is locally biholomorphic (bijective and holomorphic with holomorphic
inverse). We define a new variable q by setting

q = e2πiz

Suppose now f is a meromorphic function on h such that

f(z) = f(z + n),∀n ∈ Z
then the value of f only depends on q = e2πiz so that there exists a unique mero-
morphic function

F : D0 → C
such that

f(z) = F (q)

We can consider 0 as a singularity of F , and if this singularity is at worst a pole,
then F has a Laurent series expansion about 0:

F (q) =
∑

n>>∞
anq

n

Definition 1.1. Let f be a meromorphic function on C such that

f(z) = f(z + n), ∀n ∈ Z
Then f is holomorphic (resp. meromorphic) at ∞ if the function F (q) defined
above is holomorphic (resp. meromorphic) at 0.

If f is meromorphic at ∞ the Fourier series expansion of f or its q-expansion is
the power series F (q) =

∑
n>>0 anq

n.

Recall the group Γ = SL2(Z) acts on h. Suppose f is a meromorphic function
on h such that f(γz) = f(z) ∀γ ∈ Γ, then in particular since ζz = z + 1 so that
f(z) = (z + n), ∀n ∈ Z so we can apply the above constructions

Definition 1.2. A modular function is a meromorphic function f : h→ C satisfy-
ing the following two properties:

i) f(γz) = f(z) ∀γ ∈ Γ
ii) f is holomorphic at ∞.
The space of all modular functions will be denoted M′0.
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It is straightforward to check that M′0 is a field and contains all the constant
functions.

Remark 1.3. If we add a point ∞ to the Riemann surface Y (1) = Γ\h, where we
consider∞ as the center of the disc D0 in the new coordinate q. The new coordinate
q defines a chart around this point, hence we may consider Y (1)

∐
{∞} as Riemann

surface which we denote by X(1). This construction is analogous to the adding ∞
to C to obtain P1(C) and one sees that X(1) is also compact.

1.2. Modular functions and modular forms. The main theorem of this section
gives a very simple description of M0.

Theorem 1.4. There exists a unique modular function j satisfying the following
conditions:

i) j is holomorphic on h, has a simple pole at ∞ and j(ω) = 0
ii) j induces by passage to the quotient a bijection Γ\h→ C
iii) The first term in the q-expansion of j is 1

q

Moreover we have an isomorphism M′0 = C(j), i.e. any modular function is a
rational function of j.

In order to construct j we need to consider a larger class of functions than
modular functions.

Definition 1.5. Let k ∈ N. A modular function of weight k is a meromorphic
function on h satisfying the following two properties

i) f(γz) = (cz + d)2kf(z)
ii) f is meromorphic at ∞
If in addition f is holomorphic and holomorphic at∞ then we say f is a modular

form. If f is 0 at ∞, i.e. the q-expansion has all non-zero coefficients in positive
degree, then f is a a cusp form. We will use M′k,Mk and Sk to denote the spaces
of modular functions, modular forms and cusp forms of weight k respectively.

Note that condition i) in the above definition ensures f(z) = f(z + n), ∀n ∈ Z
so that condition ii) makes sense. Then modular functions of weight 0 are just
modular functions in the sense of Definition 1.2.

Exercise: Let f and g be modular functions of weights k1 and k2 respectively.
Show that fg is a modular function of weight k1 +k2 and f/g is a modular function
of weight k1 − k2 (g 6= 0) and that if f and g are both modular forms, then fg is
also a modular form.

The exercise shows that if we let

M :=

∞⊕
i=0

Mk

then M has a natural structure of a graded ring.

Remark 1.6. Strictly speaking these should be modular functions of weight k and
level Γ. However since we do not consider other levels in this course, we will ignore
this point.
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Recall the lattice Λτ = 〈1, τ〉 of the last lecture. For k ≥ 2 an integer, define the
Eisenstein series of weight 2k to be the function

Ek(z) :=
∑

ω∈Λz−0

1

ω2k
=

∑
(m,n)∈Z2−(0,0)

1

(nz +m)2k

We also define the following functions

g2(z) = 60E2(z), g2(z) = 140E3(z), ∆ = g3
2(z)− 27g2

3(z)

Proposition 1.7. For k ≥ 2 an integer
i) The series defining Ek above converges to a holomorphic function on h. More-

over Ek(z) is a modular form of weight 2k.
ii) Ek(∞) = 2ζ(2k) where ζ is the Riemann zeta function.
iii) The function

j := 1728
g3

2

∆
is a modular function (of weight 0)

Proof. i) As each of the terms in the series is a holomorphic function on h it suffices
to prove that the series converges absolutely and uniformly on compact subset of
h. Let Pn denote the parallelogram with vertices {±nz,±n} so that Λ∩Pn has 8n
points. Let r be the minimum distance from 0 to a point on the parallelogram P1,
we then have the estimate

∑
ω∈Λz−0

1

|ω|2k
=

∞∑
n=1

∑
ω∈Λz∩Pn

1

|ω|2k
<

∞∑
n=1

8n

(nr)2k

=
8

r2k

∞∑
n=1

1

n2k−1
=

8

r2k
ζ(2k − 1)

For z in a compact subset of h, the value r has a positve infimum, and since
ζ(2k − 1) coverges for k > 1, it follows easily that the series converges absolutely
and uniformly in any compact subset of h.

We leave it as an exercise to check that Ek(z) has the required translation prop-
erty with respect to elements of Γ.

For holomorphicty at ∞, this is equivalent to checking that Ek(z) is bounded as
z → ∞. But this follows from the above estimate by noting that for C > 0, the
value r has an infimum on the set {z ∈ h : |z| > C}.

ii) By absolute convergence we may rearrange the order of summation so that

Ek(z) =
∑

n∈Z−0

1

n2k
+

∑
m∈Z−0

∑
n∈Z

1

mz + n

All the terms in the right term tend to 0 as =z →∞, and the first term is just
2ζ(2k).

iii) Since g2 has weight 2 and g3 has weight 3, then ∆ is a modular form of
weight 6 which is non-zero by Corollary 1.9. It follows from the exercise that j is
a modular function of weight 0.

�

Remarkably, we will actually show that the above construction in some sense
exhausts all modular forms (of any weight). More precisely, we will show that the
space of modular formsM is isomorphic to C[E2, E3]. This is something of a miracle
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as what the statement is really saying is that there are many algebraic relations
between these modular forms, whose definitions a priori are based completely in
analysis.

The following is the key result we need to prove the above statements. Given a
meromorphic function f and z ∈ C we denote by vz(f) the order of the function f
at z. If f is a modular function, then v∞(f) is defined in the obvious way, and it
follows from the isolation of zeros/poles theorem that there are only finitely many
z ∈ D ∪ {∞} for which vz(f) is non-zero.

Proposition 1.8. Let f be a modular function of weight k and ez = |Γz|/2, then
we have the relation

v∞(f) +
∑
z∈Γ\h

vz(f)

ez
=
k

6

Proof. Let C be the path in the diagram on page 87 of Serre’s ”A Course in Arith-
metic.” It folllows from the argument principle that

1

2πi

∫
f ′

f
dz =

∑
z∈interior of C

vz(f)

Now we compute the left hand side of the expressions. The integrals along the
segments AB and D′E cancel since f(z) = f(z + 1). To compute the contribution
of EA, we note that changing the variable to q, this segment is mapped to a path
which loops once around 0, hence taking z →∞ this contribution will be −v∞(f).

For the contribution DD′ at ω = 1+
√
−3

2 , note that as we take the arc smaller
and smaller, we may assume that the only possible zero/pole occurs at ω. Also for
a small enough arc, the value of the f ′/f on the arc is roughly equal on the arc, so
that in the limit

1

2πi

∫
DD′

f ′

f
dz → −1

6
vω(f)

The − sign comes about from the orientation of the arcs, the same remarks reply
for the point i and ω2. The contribution along BB′ is equal to the one along DD′

and the contribution along CC ′ is −vi(f)
2 .

Finally we must compute the contribution along the arcs B′C and C ′D. Let

µ =

(
0 −1
1 0

)
then µ maps B′C to C ′D with the opposite orientation. The relation

f(µz) = f(−1/z) = z2kf(z)

gives us
f ′(−1/z)

z2
= z2kf ′(z) + 2kz2k−1f(z)

We thus obtain ∫
DC′

f ′

f
dz = −

∫
BC′

f ′(µz)

f(µz)
dµz

= −
∫
BC′

f ′(z)

f(z)
+

2k

z
dz
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Now
∫
BC′

2k
z dz can be computed explicitly, by eg. making the substitution

z = e2πix, and we obtain kπi
3 for this integral. Taking the limit for smaller and

smaller arcs the formula above becomes:

k

6
− v∞(f)− vi(f)

2
− vω(f)

3
=

∑
z∈interior D

vz(f)

The result follows from the the fact that eω = 3 and ei = 2 and ez = 1 for all z in
the interior of D. �

Corollary 1.9. i) E2 and E3 can only have zeros at the points ω or i. ∆ is
non-zero on h and has zero of order 1 at ∞.

ii) M = ⊕∞k=0Mk
∼= C[E2, E3] as rings.

Proof. i) Since E2 and E3 are holomorphic, it follows that they have non-negative
orders everywhere, hence since k/6 < 1, it follows they can only have zeros at the
specified points.

By part ii) of Proposition 1.7 we have

g2(∞) = 60E2(∞) = 120ζ(4) = 4/3π4

g3(∞) = 140E3(∞) = 280ζ(6) = 8/27π6

Thus v∞(∆) ≥ 1 and since ∆ ∈ M6, the above formula shows v∞(∆) = 1 and
that it cannot have any other zeros.

ii) The map
Mk → C

given by f 7→ f(∞) has kernel Sk and is surjective for k ≥ 6. The surjectivity
follows from the fact that we can write k = 2α+ 3β for some positive integers α, β.

Then Eα2 E
β
3 ∈ Mk, is non-zero at ∞. Therefore Mk = Sk ⊕ 〈Eα2 E

β
3 〉, so that it

suffices to show Sk is spanned by E2 and E3.
Let f ∈ Sk, then f/∆ ∈ Mk since ∆ is non-zero on h and has a simple pole at

0. Thus by induction we need to show for k = 0, 1, 2, 3, 4, 5 that Mk ⊂ C[E2, E3].
We leave this easy exercise, which follows from Proposition 1.8 for the reader to

check.
�

Exercise: Use Proposition 1.8 to show that Mk ⊂ C[E2, E3] for k = 0, ..., 5

Proof. (of Theorem 1.4) It is clear any function is unique as the difference would
be a holomorphic map on a compact Riemann surface, hence constant and since
j(ω) = 0 this constant must be 0. Thus it suffices to show j satisfies the conditions
of the theorem.

i) This follows immediately from Corollary 1.9.
ii) We need to show for a ∈ C, j(z)− a has a zero of order 1. Since j(z)− a is a

modular function of weight 0 with a simple pole at ∞, Proposition 1.8 shows that∑
z∈Γ\h

vz(j − a)

ez
= 1

It follows that j − a has a unique zero on Γ\h.
iii) This follows from an explicit computation, see Serre’s ”A course in Arith-

metic.”
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We now show that any f ∈ M′0 is a rational function of j. Suppose f ∈ M′0
has poles at a. We may multiply f by a suitable power of j − j(a) so that f is
holomorphic at a, hence we may assume f is holomorphic on Γ\h. Suppose f has

a pole of order n at ∞, then f∆n ∈M6n, but we know M6n is spanned by Eα2 E
β
3

where 2α+ 3β = 6n. Thus it suffices to show the result for
Eα2 E

β
3

∆n .
But 2α + 3β = 6n implies 3|α and 2|β, so that it suffices to show the result for

E3
2

∆ and
E2

3

∆ . This follows from the identities

E3
2

∆
=

g3
2

603∆
=

1

1728.603
j

E2
3

∆
=

g2
3

1402.∆
=

1

1402.27

(
g3

2

∆
− 1

)
=

1

1728.140.27
j − 1

1402.27
�


